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The spinor strong interaction model recently proposed by the author to account 
for meson spectra is applied to baryons. Quark-quark strong interaction is of 
massless scalar type. Harmonic confinement arises as naturally as linear confi- 
nement for mesons. No approximation is needed in order to derive, from the 
proposed covariant spinor baryon equations, coupled nonlinear radial equations 
for the ground-state spin-l/2 and spin-3/2 baryons in the rest frame. These 
equations are effectively of sixth order and call for a particle classification other 
than the usual unrelativistic one. Simplified analytical solutions are given. 
Internal functions and mass operators are analogously introduced. With these 
and the above simplified space-time solution, baryon data yield bare quark 
masses that agree approximately with those analogously obtained earlier from 
meson data. 

1. I N T R O D U C T I O N  

In the mid-1970-s, quan tum chromodynamics  (QCD)  was introduced 
as the theory for strong interactions. Based in principle upon  QCD,  De 
Rujula et al. (1975) proposed a model  to account  for hadron  spectra. This 
and similar approaches  have since become the main ones pursued and 
improved upon  by m a n y  authors,  notably Isgur and Mitra,  and have led to 
a sizable literature, par t  o f  which has been reviewed by Lichtenberg (1987). 

These QCD-or ien ted  models are basically phenomenological ,  making 
use o f  semirelativistic Hamiltonians.  Since Q C D  has not  been proven to 
offer confinement,  confinement potentials are int roduced ad hoc into the 
Hamil tonians  to fit data. Generally, a harmonic  type o f  confinement 
potential  in t roduced earlier (Feynman  et al., 1971) for baryons  and a linear 
type o f  confinement for mesons were adopted at large quark  separations. 
At  small quark  distances, some approximate  vector interaction among  the 
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quarks was assumed. By adjusting the parameters entering these models, 
good agreements with hadron spectra were obtained. The predictions, 
however, vary in accuracy, the parameters and their values differ, and a 
large number of predicted states are not seen. 

This state of low-energy hadron theory is clearly unsatisfactory at least 
in regard to mathematical aesthetics and rigor when compared to the 
low-energy ends of classical gravitation and classical and quantum electro- 
dynamics. If low-energy hadron theory is to rise to such levels, it is 
desirable that harmonic confinement for baryons and linear confinement 
for mesons arise naturally from a single unified theory which in addition 
can lead to predictions without loss of relativistic effects. 

The purpose of this paper together with a recent one (Hob, 1993; 
hereafter referred to as I) is to present such a unified theory and its 
consequences. 

In I, a pseudoscalar interaction between the quarks replaces both the 
linear confinement potential and the vector interaction among the quarks 
employed in QCD-oriented models (Lichtenberg, 1987). The method of 
construction of the basic covariant meson equations departs from those of 
conventional relativistic quantum mechanics. Linear confinement arises 
naturally and radial equations for the ground-state mesons are derived 
keeping the relativistic effects intact. The theory leads to forms of predic- 
tions in agreement with the gross structure of meson spectra. It also 
predicts the masses of a number of pseudoscalar mesons within experimen- 
tal error not predicted earlier (Hoh, n.d.-a). 

Gauge invariance of these meson equations (Hoh, 1994) further pre- 
dicts that Higgs particles are superfluous and naturally resolves the U(1) 
problem. It also relates the W and Z gauge boson masses to the linear 
confinement constant. The present formalism thus provides a natural link 
between the strong and electroweak interactions different from that of the 
so-called grand unified theories. 

In this paper, the spinor baryon equations are constructed in a way 
analogous to that leading to the spinor meson equations in Sec. 4 of I with 
the difference that a strong massless scalar quark-quark interaction re- 
places the strong pseudoscalar quark-antiquark interaction of I. In the rest 
frame, these equations are separable into a doublet (S = 1/2) and a quartet 
(S = 3/2) set of equations. These sets can be reduced to equations in 3 
dimensional relative space and yield harmonic confinement without ap- 
proximation. For the ground state spin 1/2 and 3/2 baryons, these equa- 
tions further reduce to two coupled third order nonlinear integro- 
differential eigenvalue problems in one dimension. Simplified analytical 
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solutions to these equations are given. This part is treated in Sec. 2 and 5-7  
below. 

The internal part of this paper is treated in Sec. 3 and 8 which are 
equivalent to Sec. 5 and 9 of I. Internal functions and mass operators for 
baryons are introduced and a simple model for these is proposed. Sec. 4 
gives a selection rule for the combined internal and space time baryon wave 
functions. 

In Sec. 9, application of this theory is given and discussed for 3 levels 
of increasing degree of contact with data. 

2. CONSTRUCTION OF SPINOR BARYON EQUATIONS 

In the following, the symbols and their definitions, unless stated 
otherwise, will be the same as those in I or obvious. Equations in I will be 
referred to by the same number preceded by a I. 

The quark and antiquark of a meson in I were assumed to act upon 
each other via a massless pseudoscalar interaction. If a scalar interaction 
were employed, it will lead to a sign change of ~be in (I4.9), so that the 
pseudoscalar mesons will not be confined, but the ground-state scalar 
mesons will, contrary to data. The three quarks in a baryon are, however, 
assumed to act upon each other via massless scalar interaction; pseudo- 
scalar interaction is ruled out by parity invariance of the baryon equations 
(2.9) and (2.10) below. 

Let x~, xH, and xm denote the coordinates of the three quarks A, B, 
and C, respectively. For simplicity, x~, Xll , and xm as arguments are 
denoted by I, II, and III, respectively. The starting equations for the three 
quarks and their interactions corresponding to (I4.5)-(I4.7) are put in the 
form 

C31abXA6(I) = i(mA + 

~,&,~9~(I) = i(mA + 

~Ia';ZBo(II) = i(mB + 

8114r~fs(II) = i(ms + 

3f~Zc~(III) = i(m c + 

a,,,~k~kkc(III) 

D,(VAB(I) + vAc(I)) 

VAe(I) + VAc(I))O~(I) (2.1a) 

VAB(I) + VAC(I))ZA6(I) (2.1b) 

VBc(II ) + VsA(II))O~(II ) (2.2a) 

Vsc(II) + VBA(II))xB~(II) (2.2b) 

VcA(III ) + VcB(III))Og(III) (2.3a) 

(2.3b) = i(mc + VcA(III) + VcB(III))Zcs 

1 e 
= ~ gAgB(~bB(I)ZBe(I) + ~(I)zB~(I))  

1 
+ ~ gAgc(~bg(I)Zcg (I) + ~b~(I)Zcg(I)) (2.4a) 
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1 
[BII(VBc(II) + V~A(II))= ~gsgc(Ogc(II)Zcg(II) + O}(II))~cg(II)) 

+ ~ gBgA (t~ ~A (II)za~ (II) + ~9 ~ (II)zaa (II)) 

(2.4b) 

1 
DI,,(VcA(III) + VcB(III))=-~gcgA(tP~(III))~aa(III) + O~(III)xAa(III)) 

+ ~ gcgs(OeB(III)ZBe(III) + O~(III)zBe(III)) 

(2.4c) 

The genuine three-body interaction is dropped, as it will not appear from 
(2.8) on. 

Following the procedure of Section 4 of I, we multiply the right and 
left sides of (2:1)-(2.3) together. The same is done to those of (2.4). 
Consider the product wave function obtained by multiplying together 
(2.1a), (2.3a), and (2.2b) and let it be generalized according to 

ZA6(I)Zca(III)~rs(II) --+ Zaa:(I III II) 

which is to be associated with baryons (Belifante, 1953). This spinor has 
eight components decomposable into a symmetric quartet and two mixed 
symmetry doublets. However, the ground-state baryons consist only of one 
quartet, assigned to spin 3/2, and one mixed symmetry doublet, assigned to 
spin 1/2. 

To remove the extraneous doublet, let the position x m of quark C be 
merged into the position x~ of quark A, i.e., let xm + x~ after the above 
multiplication and generalize as follows: 

ZA~(I)zo;(III)~(II) --+ Zm;(I)Zc/;(I)~(II) --+ ~{~;~:(I II) (2.5a) 

Let A and C change places in (2.1)-(2.4) and carry out the same 
multiplications and procedures to obtain an expression analogous to (2.5a). 
These expressions are equivalent since their physical content is unaltered by 
such an interchange of labels. Therefore, the middle expression of (2.5a) is 
symmetric with respect to interchange of the subscripts A and C. Inside a 
baryon, it is not possible to distinguish quark A from quark C or their spin 
orientations. Therefore, the right expression of (2.5a) is also symmetric 
under interchange of/J and/J, as is denoted by the braces, and hence has 
only six components. The product wave function on the right side of the 
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product equation is analogously generalized into 0{ag}O(I II). The same 
procedure is carried out for the product equation obtained from (2.1b), 
(2.3b), and (2.2a). 

The right side of  (2.5a) can be decomposed into a doublet and a 
quartet, much like the decomposition of (I6.1b). They are 

1 1 
Zoi = ~ (Z{i~} ~ -- Z{i i}2), Zo~ = ~ (Z{~} ~ -- Z{~i} 2) (2.6a) 

1 
Z3/2 = Z{ii} l, Z-3/2 ----- -- Z{fiS} 2, Z1/2 = ~ (Z{fii} 1 -F Z{i:~} I --k Z{ii} 2) 

V "  
(2.6b) 

1 = _ _  . . .  2 + .  . .  1~ 
~ - - 1 / 2  x / / ~  (~{i�89 + L{21} /~{22} ] 

Entirely analogous expressions can be defined for 0~, 0o 2, 0_+3/2, and 0+1/2 
by letting Z-~ 0, lower dotted indices-~ upper undotted indices, and vice 
versa on the right sides of (2.6). Equation (2.6b) shows that the quartet is 
totally symmetric under the interchange of any pair of indices. Equation 
(2.6a) shows that the doublet is of  mixed symmetry, being symmetric in the 
first two indices inside the braces, but antisymmetric when an upper and a 
lower index are interchanged. 

As quarks A and C have merged into a diquark type of  object 
described by one set of  space-time coordinates, the interaction between 
them vanishes. This corresponds to putting VAC, VcA, and gAgc to zero in 
(2.4). The product equation obtained from (2.4a)-(2.4c) now becomes 

D~ [Z, [],, VAB(I) VcB(I)(Vsc(II) + VsA (II)) 

1 2 3 
= -~ gAgcgB 

X {ZB~;(I)zs~(I)O~(II)O~(I)O~s(I)XA~(II) 

+ Zn6 (I)z~(I)z,~a (II)O ~ (I)0 ~ (I)0,~ (II) 

+ ZB~(I)O] (I)0 ~ (II)O ~(I)zB~(I)zAh(II) 

+ Z86(I)O~(I)zAa(II)O6S(I)zsh(I)OaA(II) + C.C.} 

1 2 3 + ~g~gcgB • {same terms with A ~ C} (2.7) 

where c.c. denotes complex conjunction. As there are only two coordinates, 
there can only be two-body but not genuine three-body interaction. Again, 
inside a baryon, one cannot distinguish quark A from quark B or their spin 
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orientations. Analogous to the A - C  symmetry discussed above, an ex- 
change of A or C with B in the middle term of (2.5a) can at most produce 
a phase change r on the right side of (2.5a), 

;(s~(I)zs~(I)~f(II) ~ Z{~r(I II) exp(iq~ph ) (2.5b) 

A similar relation with A ~ C holds. Equation (2.7) can now be generalized 
via (2.5) and similar relations together with 

VAB(I)Vcs(I)(Vsc(II)  + VBA(II)) ~ ~bs(I II) (2.8) 

analogous to (I4.8). In (2.7), the phase factor of (2.5b) is removed by 
complex conjugation. As a result, the terms in the both pairs of braces in 
(2.7) become equal. 

By analogy to Section 4 of I, the generalizations (2.5) and (2.8) 
together with the corresponding generalizations for the internal functions 
and operators in (3.3) and (3.5) below constitute the basic hypotheses of 
the present model and mark the departure from conventional relativistic 
quantum mechanics. 

The equations so generalized are put in the following form associated 
with baryons: 

c~] '6 ~3ghz(6~r(I II)aur~ = - i ( M  3 + qSs(I II))~{~g}~(I II) (2.9a) 

~l& Oll~k~l{ck}k( I II)8f~ a = - i (  M3 + 4bs(I II)x{~}a( I II) (2.9b) 

[], [], [] u 4s (I II) = ~ g6(;({6~f(I II)(q {bh!?(I II))* + C.C.} 

6 1 
gq = ~ (gA + gc)gAgcg 3 (2.10) 

where M 3 replaces mAmBm c according to (3.5) and (3.8) below. Terms 
proportional to m V V  and m m V  in the product equations obtained from 
(2.1)-(2.3) are dropped, as are the second, third, and fourth terms and 
their complex conjugates in both pairs of braces in (2.7). The justification 
is entirely analogous to that preceding (I4.11) and is given in Appendix A. 

The A - C  symmetry above shows that gA = gc in (2.10). Also, there 
appears to be no reason for the magnitude of the coupling constant to be 
different for quark-quark and quark-antiquark interactions. The cubic 
root of the second of (2.10) is then equal to the quark-antiquark coupling 
constant gags in Section 4 of I. 

Take the complex conjugate of (2.9b) and multiply it by ~k~bh}a. 
Adding the resulting equation to (2.9a) multiplied by Z{ag} ~ the complex 
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conjugate of Z~S,  to obtain 

g{ag} ~ OI a~ OI g~ ~lI~'f~{/J/~}f + ~{bh}a O~be. O~h~ OHea~{e'~}e = 0 (2.1 la) 

where ~ ~ , .  is the complex conjugate of qs~"k~e. Interchanging (2.9a) and 
(2.9b) and also X and ~s, we find that the above procedure leads to 

Z{ag} e #i fib Oi ~h OllefZ{bh~f+ ~ {/~k~} d 01/~c 0i#~k ~3nd~ {ck} 0 = 0 (2.11 b) 

which is the complex conjugate of (2.11a). 
If (2.9) is replaced by a Dirac equation in analogous spinor form, the 

corresponding sum of (2.11a) and (2.11b) becomes the continuity equation 
for the probability current density associated with the Dirac particle and 
leads to a conserved total probability. For a similar purpose, (2.11a) is 
chosen to be put in the form 

+ 2r ~ OI a{' Olg~iz{t~,~ f +  2Olle31p{bh}d OIb~ C~lh#~{~k;}e = Sad (2.12a) 

+ 2(O,,~iZ(,g)~ ~ o~g~z(~f ) + 2(Onear (b~)a)(O~b ~ ~9~ qS (e~)) (2.12b) 

3. INCLUSION OF INTERNAL COORDINATES 

To describe the internal properties of baryons, internal coordinates are 
introduced analogous to Section $ of I. Following the procedures there, 
(2.1) is multiplied from the right by an internal function ~P(z~) and rn A is 
replaced by an internal operator rnAop(Z~, ~/~Zl). The resulting equation is 
of the form of (I5.1) and replaces (2.1). Similarly, (2.2) and (2.3) are 
multiplied by ~q(z.) and ~(zm) ,  and rn s and m c are replaced by 
mBop(Zll,~/~Zll ) and mcop(Zil i ,~/~Zll l)  , respectively. These generalized 
equations are multiplied together as in Section 2. Following (I5.3a) and the 
relation preceding (2.5), we make the generalization 

~P (Z 1 )~ ' (ZI I I )~q(Zl I )  ~ ~psq(zl, ZIll, Zll ) (3.1) 

Consider an SU3 case; the familiar Clebsch-Gordan series reduction of 
(3.1) reads 

3 x 3 x 3 = 1 0 + 8 + 8 +  1 (3.2) 

The ground-state baryons in the SU3 scheme consist of a symmetric 
decuplet 10 and a mixed symmetry octet _8 associated with the symmetric 
j e =  (3/2) + and mixed symmetry (1/2) + of Section 2, respectively. There- 
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fore, the unobserved extraneous 8 and antisymmetric 1_ of (3.2) need to be 
removed, like the extraneous doublet mentioned above (2.5a). This appears 
to be necessary; if the extraneous 8 and doublet were to be associated with 
each other, there would be no space-time function to be associated with the 
1. 

The removal is achieved by following (2.5a) analogously and letting 
Znl merge into z~: 

~P(zOr ~ ~P(Zl)~c(Zl)r ~ r zu) (3.3) 

A discussion of the A - C  symmetry below (2.5a) can be carried over to the 
internal case here, and the right side of (3.3) is now symmetric in the first 
two indices p and s, indicated by the braces. It therefore has the required 
number of 6 x 3 = 10 § 8 components. The octet 8_ can be extracted by 
applying the antisymmetric operator ~'sqr to the right side of  (3.3), leaving 
behind a totally symmetric decuplet 10_0 indicated by the braces in (3.4b), 

~rP(zI, ZII ) = ~{ps}q(Zl, Zii)g, sqr 8 (3.4a) 

r z , )  10 (3.4b) 

The 8 of  (3.4a) is of mixed symmetry, being symmetric in p and s in the 
braces, but antisymmetric under the interchange of the last two indices. 
The trace of q~ vanishes. 

By analogy to (I5.3b) and (2.8), the product of the mass operators is 
similarly generalized: 

m~rncrn B ~ mAop(Zl, O /Ogl)mcop(Zlll, O /.OZlll)mBop(Zll, O/0ZlI) 

--* mAop(Zl, O /Ozl)mcop(Zi, d /Ozl)rnsop(Z~i, ~ /OZu) 

m3op(Zl, 0/021, zll , O/OZll ) (3.5) 

With these generalizations, (2.9) becomes 

~'~" OghZ/6~r(I 1I)3 {ps}q(zI, ZII )~llf~; 

= - i (m3op (z,, ~/Oz,, z,,, O/OZ,l ) + q~s (I I I))r {~g}o (I II) r ~P~}q(z,, z u ) (3.6a) 

dis , dl~ k ~ ~"k} o (I II)Ouoar {ps}q(zi, Zll ) 

= -i(m3op(Zl, O/Oz~, zn, d/Ozn) + ~s( I  II)z~s~}a(I II)r zn) (3.6b) 

The total baryon wave functions 

Z{s~f(I II)~{ps}q(Zl, Zil), lit {ck}0(I II)~{ps}q(Zl, Zll ) (3.7) 

must now be eigenfunctions of m3o p according to 

m3op(Zl, O/OZl, Zll , O/OZil)~{ps}q(zl, Zll ) = M3r Zll ) (3 .8)  
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where Mb 3 denotes its eigenvalue. Equations (3.6), (3.8), and (2.10) are the 
proposed spinor baryon equations in the present model, subjected to the 
symmetry condition (4.1) below. 

4. S Y M M E T R I C  H A D R O N  WAVE F U N C T I O N  P O S T U L A T E  

The total baryon wave functions of (3.7) associate the mixed symmetry 
doublet (2.6a) with the mixed symmetry _8 of (3.4a) to represent the 
observed spin-l/2 octet baryons. Similarly, the totally symmetric (2.6b) and 
(3.4b) are combined to represent the observed spin-3/2 decuplet baryons. 
However, (3.7) also associates the same mixed symmetry doublet to the 
totally symmetric 10 and the same totally symmetric quartet to the mixed 
symmetry 8, contrary to data. To eliminate the representations of these 
unobserved states, the following postulate is made. 

The total hadron wave function must be totally symmetric under simulta- 
neous interchange o f  the space-time index and the internal index associated 
with a quark with those o f  another quark or antiquark. 

The essence of this postulate is equivalent to that of the so-called 
symmetric quark model, which, for instance, leads to the approximately 
correct baryon magnetic moment relations (Lichtenberg, 1978). 

Applied to baryons, the postulate means that (3.7) must be subjected 
to the condition 

~{/~/~}f~ {ps}q _~. ~{l~f}h~ {pq}s 

r ~ {ps}q ~_ []] {ce}/~ ~ {pq}s (4 .1)  

For mesons, the above postulate led to (19.2). This postulate plays a role 
similar to that of Pauli's theorem in conventional quantum mechanics in 
eliminating extraneous solutions. The role of identical particles in Pauli's 
theorem is taken over here by quarks which are indistinguishable, hence 
appearing as identical, inside hadrons. 

5. R E D U C T I O N  OF THE SPACE-TIME E Q U A T I O N S  

The space-time part of (3.6), i.e., (2.9) and (2.10), is now reduced 
following the procedure of Section 6 of I in the rest frame. Introduce the 
relative and laboratory frame coordinates 

x ~ = Xn ~ -- x f ,  X ~ = (1 - -  a b ) X l  t~ + a b X l l  ~ 

Further, let g6 be absorbed into the ~b's and Z's analogous to (I6.11). 
Solutions of the following form are sought: 

gq3Z{6,~}f(I II) = e -iK~ xp.~{ij~}f(xp ) (5.1a) 

g3,1,{,.k} (I II) = e -i,% q,p, ~;\ Xl~{ck}k(XP ) (5.1b) 
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Here, K, = (Eo, -K) .  The relative time x ~ dependence is assumed to be of 
the form exp(icOoX ~ and the choice ab = o%/Eo + 1/2 is made (Hoh, 1993). 
Here, co o denotes the relative energy. Equation (2.9) in the rest frame K = 0 
now becomes 

( i3"6Eo/2 - O'6)(i6g~Eo/2 - Ogh)Z{6~}f( x ) ( i6:oEo/2  + ~:~) 

= - i ( M  3 + 4bs(X))qs ~'gIo(x) (5.2a) 

(i3~CEo/2 _ ~&.)( i f~kEo/2 _ ~k)~S {ck} (x) ( i6~aEo/2  + ~ d )  

= -- i ( M  3 + 4bs(X))Z(6~i}a(x) (5.2b) 

Here, 6 " ~ -  6~, and c3 "~ and Of 0 refer to x in x ~ and are given by (I.A2) 
without the subscript I and with O0-+0. q$s(X) is given by a similar 
reduction of (2.10): 

1 
- AAa4bs (x) = ~< (Z(~f(x)(~s (bh!t,(X)) * + C.C.) (5.3) 

By applying the e operators in (I6.1a) to (5.1a), one can separate off a 
doublet of the form of (2.6a), whose ground state has spin 1/2, leaving 
behind a quartet of the form of (2.6b), whose ground state has spin 3/2. 
Similar operations can be carried out for (5.1b), (5.2), and (5.3). Putting 
the S = 3/2 components in (5.2) and (5.3) to 0, we obtain for the remaining 
S = 1/2 equations 

( i fa6Eodl2 --  0a6)(E~d/4 + A)Zo~(X ) = - i (M3d + q$sd(X))r (5.4a) 

(i6&.Eod/2 -- ~3&.)(Eo2d/4 + A)O~(x) = - - i ( M 3 d  + q~sd(X))Zo6(X) (5.4b) 

AAA4bsd(x ) = ~ Re I/sg(x)z*~(x) (5.5) 

Here, the subscript d refers to specialization to doublets; the subscript q 
below refers to quartets. 

The remaining equations in (5.2) with totally symmetric wave func- 
tions and q$s -+ 4bsq are assigned to S = 3/2. q~sq is obtained from (5,3) by 
putting the S = 1/2 functions qs o and Zo to 0: 

) AAA~bsq(X) = - 4  \~ = -3/2 Z~(x)~s*(x) + c.c. (5.6) 

For K #-0, the full (2.9) must be used. Analogous to what is said above 
(I6.12), the S = 3/2 components of (2.6b) will be of order K and appear as 
"small" components in (2.9) for a reduction to the S = 1/2 equations (5.4) 
when K = 0. The roles of S = 3/2 and S = 1/2 components in (2.6) are 
switched if (2.9) reduces to the S = 3/2 part of (5.2) as K--+0.  
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6. H A R M O N I C  C O N F I N E M E N T  A N D  THE S = 1/2 E Q U A T I O N S  

The Green's function for (5.5) and (5.6) is given by 

AAAGb(X, x') = 6(x - x') (6. la) 

Gb (x, x') = -- ( 1/96rc) Ix -- x'[3 (6.1 b) 

There are also homogeneous solutions to (6.1a) proportional to Ixl, Ixl-1, 
Ixl 4, Ixl 2, and a constant. The Ixl 2 term can be dropped according to the 
reasoning below (I7.1). It can also be shown that the Ixl 4 term belongs to 
the same category and can be neglected. Thus, (5.5) and (6.1) lead to 

l f d3x,lx_ Xq 3 Re(~so(X~ ')Zoa(X* ')) § d,l Ix[ § d, - dlo[X[-1 ~bSd (X) = 72rc 
(6.2) 

where the d's are integration constants. 
Analogous to the observation preceding (I7.8), (5.4) and (6.2) assigned 

to the S - 1/2 baryons are also generally not separable in the r and 0 space. 
In the Ix[ = r ~ 0  and oo limits, however, (6.2) shows that r depends 
upon r only and separation is possible. Noting that (5.4) resembles Dirac's 
equations for a hydrogen atom but with the Coulomb potential replaced by 
a scalar potential, we can make the same form of wave function ansatz 
(Bethe and Salpeter, 1957): 

~s~(x) = Tgo(r)( ~ +- m _+_ 1/2~1/2 
21+1 ) Y,m-V ll2(O, ~P) 

+ ifo(r)(l T-m + 3/2"] '/2 
-2-1q--3- J Yr cP) (6.3) 

where the upper signs refer to a = 1 and the lower ones to a = 2. We obtain 
Zoo(X) by letting go(r)~-go(r)  in (6.3). The radial equations associated 
with the Yt and the Yt+ ~ components are 

2 ~ 4 E~ + + 4~Sd(• --' 0, 

- - ( :  E2d + A/)(0r  § ~ - ~ ) f o ( r ) : 0  (6.4a) 

0d!,4Eo2d+A,+l --M3d--q~sa(X--~0, o(3) (r) 
2 

+ ~ E o a + A , + ,  Or- go(r)=O (6.4b) 

= - 0 r  + - 0 r  r2 Or O/Or, A , -  2 2 l(l + 1) (6.4c) 
r 
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where 

~bsd (x ~ O) = -- d~o/r (6.5a) 

1 1" 3 f d 3 x  Re ~(x)z*~(x)  = ~,]r 3 q~sd(X-~ ___)- 72n (6.5b) 

follow from (6.2). 
One of the 6 asymptotic solutions to (6.4) and (6.5) is 

go(r ~ co) = - fo(r  -~ oo) = Cdoo r~de--~dr2/2 (6.6) 

where Cdoo and zd are constants. A harmonic type of confinement thus 
arises as naturally as the linear confinement does in (I7.6a) and (I8.6b). It 
persists for ~a < 0 iff0(r ~ oo) changes sign relative to go(r ~ oo). Near the 
origin, the treatment follows closely that of Appendix B of I. There are six 
independent solutions: 

go(r~O) = Cg00~cl)U z'a, 2 d = / + 2 ,  l, - I - -  1, fo (r~O)  = 0  (6.7a) 

fo(r~O)=cro(2d)r;% 2 a = l + l , - l , - l - 2 ,  g o ( r ~ 0 ) = 0  (6.7b) 

where the c's are constants. 
Analogous to the l = 0 case of Section 7 of I, the l = 0 case here can 

also be separated. Equation (6.2) now involves r only and becomes, 
together with (6.3), 

1 dr' (f~(r') - g~(r'))r'Z(5r 4 + lOrZr '2 + r'4)/r 
~bsa(r) - 360rc 

+ dr' ( f~(r ' )  - g~(r'))r'(5r '4 + 10r'ar 2 + r 4) 

+ dllr + dl - dlo/r (6.8) 

Equation (6.4) with l = 0  and q~sd(• oo) replaced by (6.8) becomes 

I 1 3 3 ~Eod olgo(r) - - ( ~ E 2 d +  + ~ ) f o ( r ) = 0  

(6.9a) 

1 ) 
E3d -- M3d -- dPsd(r) + ~ EodA, (r) + -~ E2a + A~ Orgo(r) = 0 (6.9b) 

valid for all r. The amplitudes of the radial wave functions are limited by 
a conserved quantity derived in Appendix B. This quantity in (B3) is 
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denoted by 

Ncd=2E2ofd3xL~,=4fdr.r2(g~(r)+~f~(r)) (6.9c) 

Equations (6.8) and (6.9) form a one-dimensional singular nonlinear inte- 
grodifferential eigenvalue problem assigned to the S =  1/2, S-wave 
baryons. 

Neglecting solutions diverging at the origin, (6.7) and (6.3) show that 
there are three possible solutions, which in the r ~ 0 limit are of the form 
Cgo(0), Cgo(2)r 2, and Cfo(1)rYlm. These c's as well as cdoo and rd are no 
longer free, but are determined by the nonlinear equations. The present 
model thus Calls for a classification of  the S = 1/2, S-wave baryons 
different from the nonrelativistic one in the literature (Lichtenberg, 1978, 
1987; Particle Data Group, 1990), but similar to that of  Appendix B of I. 
The lowest 2 d value in (6.7a) with l = 0 is tentatively assigned to the 
ground-state JP = ( 1 / 2 )  + baryons. 

Equations (6.8) and (6.9), indeed the general (6.4) with q~sd(X--+0, o0) 
replaced by (6.2), can be solved exactly if the following approximations are 
made. Assume that a baryon is confined to a small region near the origin; 
(6.2) can be approximated by its last term. Assume further that in this 
state, the "kinetic energy" terms AI and At+~ are small relative to the 
squared masses Eo2d; (6.4), now holding for all r, is simplified to 

) (,+2)1 
---~Eod--M3d+dlo/r go(r) + a~ -Jr- r -4 E2dfo(r) = 0  (6.10a) 

- 7 ) 4  ~odgo(r) = 0 (6.lOb) 

which has the same form as the radial equations derived from Dirac's 
equation for a hydrogen atom (Bethe and Salpeter, 1957) with the Cou- 
lomb interaction replaced by a scalar interaction. Thus, the solution of this 
classical problem can be simply modified for application to (6.10). The 
modification lies essentially in the indicial equation for (6.10). The eigen- 
value of  (6.10) can be expressed as 

E0d = (+-) 2Mbd[l -- 16d~o/E4d(nr + St + 1)2] '/6 (6.1 la) 

St + 1 = (+_)[(l + 1) 2 + 16d2o/Ead]'/2 (6.11b) 

where F/r is the radial quantum number. For nr = 0, (6.11) is simplified to 

E0d = ~+)2Mbd[1 + 16d~o/(l + 1)2E4d] -1/6 (6.12) 
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For the ground state associated with (6.9), the above approximation leads 
to (6.12) with 1 = 0. This approximation reduces the order of (6.4a) and 
(6.4b) by 2 and corresponds to keeping the 2d =/ ,  - ( l  + 1) solutions of 
(6.7a) only. The other solutions of (6.7) are removed by the approximation. 

7. S = 3 1 2  EQUATIONS 

The S = 3/2 baryon equations, (5.2) with totally symmetric X in (2.6b) 
and ~b with ~b s replaced by ~bsq of (5.6), are also generally not separable. In 
the r --, 0 and ~ limits, however, separation is again possible. Analogous to 
the expansion in vector spherical harmonics in Appendix B of I, the X's and 
~'s defined in and below (2.6b) can be expanded as follows: 

3/2 

X~(x) = ~ C(j  + v, 3 , j ;  m - It, #)Yj+ vm-~(~, r247 v(r) (7.1a) 
v = - -  3 / 2  

3/2 

~bu(x) = ~ (_ )v§  1/2C( j + v, 3,j;  m -- #,/~)Yj+v,~_,(~, ~p)gj§ 
v = -- 3/2 

(7.1b) 

where /t = +_3/2 and +_1/2, and the C's are the usual Clebsch-Gordan 
coefficients. 

At r ~ 0 and oo, (5.6), by analogy to (6.2) and (6.5), yields 

r ( X ~ 0 )  = - -  d 3 o / r  (7.2a) 

<PSq(x--) ~ )  ~ r 3 f 3/2 = 192zc d3x Re E Zu(x)~k*(x) = 0~3qr 3 (7.2b) 
,u = -- 3/2 

where d3o is a constant. The radial equations in these limits associated with 
the four spherical harmonics are given in Appendix C and hold fo r j  > 1/2. 

For j = 1/2, (7.1) and Appendix C no longer hold. Analogous to the 
case mentioned below (IB2), where the three kinds of spherical harmonics 
in the general vector spherical harmonics reduce to one for 1 = 0, the four 
components in (7.1a) and (7.1b) can be shown to reduce to two compo- 
nents; the h(r) and k(r) terms in Appendix C drop out. Inserting the 
two-component form of (7.1a) and (7.1b) into (5.6) and making use of 
tables for the Clebsch-Gordan coefficients and normalized spherical har- 
monics one can reduce it to 

1 
AAA~bsq(r) = 16rt (f2(r) - g2(r)) (7.3) 

independent of the angles. 
Therefore, (5.2) as treated in Appendix C is separable for all r when 

j = 1/2. Now, (C2c) and (C2d) also drop out, as the Clebsch-Gordan 
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coefficients and spherical harmonics multiplying these can be shown to 
vanish f o r j  = 1/2. The remaining (C2a) and (C2b), together with (7.3), by 
analogy to (5.5) and (6.8), become 

|goqAllg(l")- (~ E02q -'~" A 1 )(~r "~- !~f(F) ~0 
(7.4) 

 EoqA2 r)+( E2q+ 
'[;o ~sq (r) - 192Oft dr' ( f2(r ' )  - gZ(r'))r'2( 5r4 + lOr2r '2 + r'4)/r 

+ dr" ( f2(r ' )  - g2(r'))r'(5r '4 "Jr- lOr'2r; + r 4) 

+ d3,r - d3o/r + d3 (7.5) 

where the d's are integration constants. These equations now hold for all r 
and are assigned to the S = 3/2, S-wave baryons, together with a supple- 
mentary condition to be derived from (2.11) in a way similar to the way in 
which (6.9c) was. 

These S = 3/2 equations are of the same form as the S = 1/2 equations 
(6.8) and (6.9). This resemblance is of the same nature as that between the 
S = 0, l = 0 equations (I7.3) and (17.4) and the S = 1, l = 0 equations 
(I8.3) and (I8.4). 

For large r, (7.5) can be put in the form 

(gsq(r ~ o : ) )  = - -  0 ~ 3 r  3 (7.6) 

and (7.4) yields the asymptotic form 

f ( r  ~ co) = q(r ~ oo) = cg~r~qe-~q~2/2 (7.7) 

which is confining for aq > 0. Otherwise, f o r  g in (7.7) has to change sign. 
Here, %oo and Zq are also not free constants, but are fixed by the nonlinear 
equations. In the r -o0  limit, (6.7), dropping the subscript 0, with l = 1 
applies. Radial solutions converging at the origin are then of the form 
cg(l)r, cg(3)r 3, and cr(2)r 2. Analogous to the S =  1/2 case, the Cg(1)r 
solution is tentatively assigned to the ground-state S = 3/2 baryons. 

Equations (7.4) and (7.5) can also be solved exactly if two approxima- 
tions like those assumed above (6.10) are made. In this case, (6.11) also 
applies if l = 1, the subscript d is replaced by q, and dlo~d3o. The 
equivalent of (6.12) becomes 

Eoq = (_+) 2Mbq[ ! + 4d3o2/Eoq 4] - 1 / 6  (7.8) 

associated with the cg(1)r solution near the origin. 
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8. MODEL FOR INTERNAL FUNCTION AND MASS OPERATOR 

To obtain M 3 from (3.8), the internal functions ~P'~q and mass 
operator m3o p are considered below. The approach is entirely similar to that 
of Section 9 of I. 

Assume, as in I, that 

~,(z,) --,ziP, ~ ( z , . )  +z~ . ,  ~(z , , )  = z~'~ (8.1) 

The left sides, in order, have been associated with the three quark equa- 
tions (2.1), (2.3), and (2.2), respectively. Analogous to Section 9 of I, the 
association is also possible if z~, zn and zm in (8.1) are permuted. For 
example, (2.1) can be associated with any one of the three internal 
functions; XA6(I)~(zj), X~(I)~5(zn), and ~AI;(I)~P(Zm) are all possible. 
Thus, the three internal coordinates are new degrees of freedom similar to 
that of color in QCD. The so-called R ra t io=a(hadrons ) /a (#+#  - )  in 
e+e - annihilation may in principle not be affected if the color degrees of 
freedom are replaced by those of the z's. 

In (I9.1), there are two linear combinations. The analogous specializa- 
tion of (3.1) into products of the right sides in (8.1) leads to six linear 
combinations of terms consisting of I, II, and III permutations of z~Pz~zm.S 
These six combinations reduce to three under the restriction of zln-+ z~ of 
(3.3). With the notations z~ = z and zn = u in Section 9 of I, (3.4) is thus 
specialized to 

qP~ (zl, zn) --* zPzSu%sq (8.2a) 

(Psq}(zl, zn)  --* zPz'u q + zPu~z ~ + uPz'z q (8.2b) 

These forms are the same as those in the literature (Lichtenberg, 1978) if 
two of the quarks in the latter have the same coordinates. 

The m3o p operators in the middle of (3.5) are of the form (I9.3a). By 
analogy to (I9.5), the general form of the right side of (3.5) is 

m3op = m3op( zv, uv, Ozv ~- Our, mv)v =p,s,q (8.3) 

Further specialization of (8.3) depends upon the forms of the baryon 
internal functions, analogous to the assumed forms of (I9.6a) and (I9.8a). 
Consider first the symmetric (8.2b). The simplest form of (8.3) yielding a 
dimension of cubed mass, employing the associations of m~O~, and m~O,~ 
below (I9.5), is 

V 1 T m3op(P, s, q) s = ~, - m,(z  ~,~ + uUc?.~) (8.4) ] 
which is simply the cube of half of the bare quark mass summing operator. 
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When applied to (8.2b), it yields the eigenvalue 

1 
M3(p, s, q)s = -~ (rap + ms + mq) 3 (8.5) 

For the mixed symmetry (8.2a), the form of (8.4) is neither necessary nor 
sufficient. Consider first p ~ r; there will be one repeated index on the right 
side of (8.2a). Let the indices be p, p, and q. One of the forms next to (8,4) 
in simplicity is to include terms like those of (I9.6a): 

m3op(p, p, q)M = ~ mp(z ~ + u'O,,) + ~ mq(z~,q + uqO,q) (8.6) 

where the bracketed terms are again half the bare quark mass summing 
operator. This internal operator is symmetric in z and u as well as in p and 
q in spite of the fact that the left side of (3.5) is not. However, this is in 
agreement with the corresponding space-time generalization (2.8), where 
the left side is not symmetric in I and II, but the right side, by (2.10) and 
(5.3), is. Application of (8.6) to (8.2a) yields the eigenvalue 

1 
M~(p, p, q)M = g (2mp + mq) 3 (8.7) 

the Z ~ and A ~ internal functions correspond to those of rc ~ of (I9.7), with 
the lower sign and u p ~ - u  p, and r/of (I9.9a), respectively. By (8.2a), these 
have the internal functions 

ql - q 2 ~ 2 z t z 2 u 3 - z 3 (  z2ul +zlu2), Z~ (8.8a) 

2 3 ~ 3Z3(z2ul __ g lU2), A ~ (8.8b) I/] + qz -- 2r/3 

which involve all three indices. Therefore, (8.6) has to be generalized to 
include a third index to become 

m3op(p, s, q)M = m3op(P, s, q)s (8.9) 

Equation (8.8) exhibits additional symmetry under the interchange of 
the indices 1 and 2. Following the discussion below (19.7) for the analogous 
meson cases, we modify m3o p of (8.9) further to include similar index 
symmetrizing operators corresponding to the bracketed expression in 
(I9.8a). Among the operator terms of (8.9), the only one that allows such 
a symmetrizing and has (8.8) as eigenfunctions with nonvanishing eigenval- 
ues is 

123 3 3 m3op =-~ ml m2m3(z  ~z3 '1-/d3Ou3) I(12) (8. lOa) 

i(12) = zlz20~ ~2 + uJu2O.l 0.2 + zlu28~10~2 + ulz28.~ 8:z (8.lOb) 
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Under the interchange of the upper indices, (8.10b) becomes 

I(21)= z2Zl~z!~z2-~-b12~ll~ul~u2"~- zZUl~zl~uZ'37 U2Zl~ulOz2 (8.10e) 

and (8.8) remains as eigenfunctions of (8.10c). By analogy to the construc- 
tion of (I9.8a), I ~ of (8.10a) is now replaced by the index-symmetrized 
form 

and (8.10a) is replaced by 

I {~2) = ~ (1 (12) + 1 (21)) (8.10d) 

m~12}3 6 ~op = -~ rnt m2m3 ( Z3 Oz3 '}- U3 ~u3 ) I{12 } (8.10e) 

For Z ~ and A ~ therefore, (8.6) is replaced by 

m 3 o p ( p , s , q ) M { 1 2 } = m 3 o p ( p , s , q ) M  -- m" 3opl23 + rYt" 2~op1~12}3 (8.1 la) 

Application to (8.8) yields the eigenvalues 

1 
mb3(Z ~ = ~ (ml + m2 + m3) 3 (8.1 lb) 

3 
M3(A ~ = M3(Z ~ -- ~ ml mzm3 (8. l lc) 

The index-symmetrized operator (8.10d) plays a role similar to that of 12, 
the square of the isospin operator, and differentiates A ~ with 12 = 0 from Z ~ 
with 12 = 2. There is also a corresponding index-symmetrizing operator for 
mesons, which, when operating upon the co and pO internal functions 
(I9.7), produces zero eigenvalues. 

For charmed baryons, the above SU3 results can be taken over if one 
of the indices 1, 2, and 3 is replaced by the index 4. Thus, the eigenvalues 
for A ~ Z ~ and E + and E -  of  (8.11b), (8.11c), and (8.7) become those for 
A, + , Z, + , and Z, + + and Z, ~ respectively, if the index 3 is replaced by 4 
(Lichtenberg, 1978). The corresponding eigenfunctions of and eigenvalues 
for E A+ and E A~ are simply those for A, ? with its index 2 ~ 3  and index 
1 --* 3, respectively. 

9. APPLICATION AND DISCUSSION 

In this section, application of the present formalism is given on an 
overall level and shown to b e  capable of accounting for several basic 
observations [see point (a) below] not accountable by QCD. Comparison 



Spinor Strong Interaction Model for Baryon Spectra 2343 

of da ta  to predictions of analytical but simplified, hence approximative, 
solutions [see point (b)] shows acceptable agreement: The full numerical 
integration program required to check the theory by data is beyond the 
scope of this paper, but is discussed together with classification implications 
under point (c). 

( a )  The harmonic type of confinement shown in (6.6) and (7.7) arises 
from the same basic formalism that led to linear confinement for mesons in 
(I7.6a). The radial equations (6.8) and (6.9) for ground-state, spin-l/2 
baryons are specialized from the basic covariant (2.9) and (2.10) without 
approximation except for the assumption of zero relative energy co o in:(B1). 
This assumption can perhaps be removed in a quantized treatment, as has 
been shown for the meson case (Hob, 1994). The same basically holds for 
the ground-state spin-3/2 baryon equations (7.4) and (7.5) supplemented 
by a relation corresponding to (6.9c). Therefore, numerical solutions of 
these equations will include full relativistic effects. 

Scalar and pseudoscalar interactions as basic interactions of nature on 
a par with the vector or electromagnetic interaction also find natural places 
in the present formalism. 

(b) At this level, the ground-state, S = 1/2 and S = 3/2 baryons are 
treated making use of the approximate results of (6.12) and (7.8) together 
with the Mb ~ formulas of Section 8, neglecting the u-d-quark mass differ- 
ence. For nucleons, p, q = 1, 2, and (8.7) becomes 

1 
Me(N ) ~ (2m, +m2) ~ Mb(A), ml =m2 (9.1) 

which is the same as the mass Mb(A) obtained from (8.5). Putting Eod and 
Eoq equal to the measured neutron and A ~ masses (Particle Data Group, 
1990) and l = 0 in (6.!2) and eliminating Mbd = Mbq by means of (7.8) 
yields 

d2o - 0.431d~o ~ 0.2 (9.2) 

To be consistent with dmo = dml below (I10.2), the d's here are also assumed 
to be equal and (9.2) yields d30 = dlo = 0.593 GeV 2. With this value, (7.8) 
and (8.5) yield the bare quark mass m~ = m 2 = 0.445 GeV (same units as 
used below), in close agreement with the corresponding upper limit values 
of 0.437 and 0.447 estimated from the ~ and co data below (I10.2). 

The bracketed expression in (7.8) and particularly in (6.12) deviates 
appreciably from 1 for the lighter baryons, so that the "equal-spacing" rule 
indicated by (8.5) is somewhat modified. Making use of the A-, Y~*-, E*-, 
and ~ -  masses for Eoq, we find that (7.8) and (8.5) yield the approximate 
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equal spacing of m 3 - m  2 =0.125, 0.130, and 0.124, which has a spread 
about half that of Eoq. These yield rn 3 = 0.572, 0.577, and 0.571, respec- 
tively, which are somewhat higher than the upper limit values 0.559 and 
0.554 obtained from the K and tp data below (110.2). 

With the known neutron, Eo, and ,E ~ masses, application of (6.12) with 
l = 0, (9.1), (8.1 lb), and (8.7) yields the unequal spacings m 3 -  m2 = 0.154 
and 0.08. These lead to m 3 = 0.599 and 0.525, yielding a mean value of 
0.562, comparable to the m3 values above. The A ~ mass obtained from 
(8.11 c) and (6.12) becomes 1.027, much less than the measured 1.116. 

The same procedure can be taken over for the charmed baryons 
according to the end of Section 8. The E,. mass of 2.453 yields m4 = 1.623, 
not far from the upper limit values 1.62, 1.591, and 1.563 estimated from 
the D, D~. and J/r data below (110.2). With this m 4 value, a A~ + mass of 
2.3386 is obtained, which exceeds the measured 2.285. The =A+ and =Ao ~ ,  ~-.d c 

masses are obtainable from (8.11c) with index 1 or 2 replaced by 4. 
(c) As is shown by (6.7), there are three regular solutions near r = 0. 

Similar to the assignments near the end of Section 10 of I, a particle 
classification different from that according to nonrelativistic quantum 
mechanics is called for. For example, assuming that eigensolutions exist, 
the nucleon is naturally assigned to 2 d = l, l = 0 in (6.7). The corresponding 
eigensolutions associated with 2a = l + 1 and l + 2, l = 0, in (6.7) refer to 
the same nucleons, not different particles. Compared to the nucleon wave 
functions, (6.7) shows that these wave functions extend further out radially 
and can possibly be associated with higher energies, as is indicated by the 
form of (6.8). 

The baryon equations are more complex than the meson equations of 
I. In addition to being of higher order, E0 and Mb do not appear together 
as a single eigenvalue as they do in I. Unlike the meson equations (17.3) 
and (I8.3), (6.9) and (7.4) show that the radial wave functions depend 
upon the quark content via Mb. By (6.5b), (6.6), (7.6), and (7.7), the strong 
interaction radii of the baryons depend upon their quark content, contrary 
to the meson case mentioned below (I10.1). 

For angularly excited states 1 :~ 0, separation in the relative r and ~q 
space shown in (6.3) and (7.1) no longer holds. Thus (5.4), (5.5), (5.2) and 
(5.6) together with relations corresponding to (6.9c) need to be integrated 
in two dimensions. The numerical program for this nonseparable case is 
obviously of a higher order of magnitude. 

Possible nonseparable solutions may be classified differently from the 
usual separable ones employed in literature (Lichtenberg, 1987; Particle 
Data Group, 1990). The same holds for angularly excited meson states 



Spinor Strong Interaction Model for Baryon Spectra 2345 

governed by (I6.7), (I6.8), (17.2), and (I8.1). Since nonseparability couples 
the r and ~ degrees of freedom, it may allow fewer solutions than does 
the separable case, in which the number of solutions is essentially the 
number of angular solutions times the number of radial solutions. If so, 
this may account for the large number of unobserved states predicted in the 
literature. 

APPENDIX A. NEGLECTED TERMS IN (2.7) AND (2.9) 

Consider first the transition from (2.7) to (2.10). The prod- 
uct Z.~(I)~(I)zA~(II) in the fourth term in the first pair of braces of 
(2.7) differs from the middle expression of (2.5a) basically in that the 
dotted indices are not symmetric, as they refer to different coordinates. 
Therefore, a generalization according to (2.5a) will not lead to a reduction 
from eight to six components. Similarly, the corresponding product 
Xm;(I)~(I)~b~(II) in the third term there will also involve eight compo- 
nents after generalization, in contrast to the six components of ~b ~ag~(I, II) 
above (2.6a). 

An analogous generalization of the product XB~(I)xB~(I)xad(II) in 
the second term there will make it totally symmetric owing to (2.5) and 
hence leads to four components only. Thus, these three product wave 
functions, when generalized, cannot represent the baryons in a unique 
way and are therefore put to zero. Only the product XB~(I)zB~(I)~,~(II) 
in the first term there survives by virtue of (2.5). The corresponding terms 
in the second pair of braces and the c.c. terms follow suit and (2.10) 
results. 

Turning to the transition from the products of (2.1)-(2.3) to (2.9), 
the above results also apply. In addition, by the same resoning preced- 
ing (I4.11), there are no free quarks in the baryon system, so that the ~a,s 
and Z6's in the product equations, generalized according to (2.5), as 
well as (2.1)-(2.3) themselves now drop out. By (2.4), the V's also 
vanish, in agreement with the nonobservation of massless scalar particles. 
Therefore, so do the m m V  terms on the right sides of the product 
equations. The products V(I)V(I) and V(I)V(II) can be obtained by 
multiplying together two of (2.4a)-(2.4c). After generalizations analogous 
to (2.5), the right sides of the equations will contain functions of diquark 
type ~/ac, Z6a and meson type ~b~, X~- As free diquarks and mesons are 
apparently absent in pure baryon systems, the corresponding wave func- 
tions of these types can be put to zero. Hence the m V V  terms also drop 
out. The remaining VVV terms are generalized according to (2.8), ~ and 
(2.9) is obtained. 
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APPENDIX B. CONSERVED QUANTITY FOR S = 1[2 AND 1 = 0 

With the same set of specializations in Sections 5 and 6 that convert 
(2.9) and (2.10) into (6 .8)and (6.9), S~a of (2.12b) can be written as a 
divergence in the relative xl and x 2 directions. Therefore, ~ S~a dx 3= O. 

Repeating the same procedure for (2.12a) leads to 

= ~E0  

+ imaginary terms = 0 (B1) 

where 

J~6 = Zoa(X)go6(x) + ~Soa(X)~bo~(X) (B2) 

Here, X0a and go~ are the complex conjugates of Zo~ and ~Sob, respectively, 
and 31 and 32 refer to derivations in the relative xl and x2 directions, 
respectively. The integrals in (B1) are independent of the relative time x ~ 
so that the 3o terms make no contribution. 

Below (9.6) of (Hoh, 1994) it was shown that the relative energy co o 
associated with the quarks in a meson vanishes in the rest frame, as a result 
of a quantized treatment. This lends support to the assumption, made in 
the absence of such a quantized treatment here, that the relative energy coo 
in (B1) is also zero. The second term on the right of (B1) therefore 
vanishes. 

While the first two terms on the right of (B1) are real, the last one 
is imaginary. Addition of (2.11a) and (2.11b) therefore removes this 
imaginary term. Integration of this sum over x thus yields 

3xo2E ~ f d3xjo~, = 0 (B3) 

Here, the integral is a conserved quantity independent of the laboratory 
time X ~ analogous to the integrals in (A3) of Hoh (1994). The j,6 and Ja~ 
become the probability current density and probability density, respec- 
tively, if (2.9) is replaced by a Dirac equation, as was mentioned at the end 
o f  Section 2. 

APPENDIX C. RADIAL EQUATIONS FOR S = 3]2 AT r-~ 0 AND 

Substitute (7.1) and (2.6b) and a similar relation for the ~'s  below 
(2.6b) into (5.2) and put the doublets Zo~ of (2.6a) and ~)  to zero. Let 
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further ~bs(x ) there be replaced by (7.2), Eo--,E0q, and M~-oM~q, where 
q signifies association with S = 3/2. The eight component equations of (5.2) 
can be shown, after considerable algebra making use of tables of Clebsch- 
Gordan coefficients, to degenerate into the same set of four radial equa- 
tions (C2a)-(C2d) below, associated with the four spherical harmonics 
Yj+v, v : 3/2, 1/2, --t/2, and -3/2, respectively. Let 

gj+3/2=if, &+il2=g, &_ll2=ih, gj_3/2=k (C1) 

These equations read 

I IE3  1 8 ~176176 f(r) 

1 [3(2j -- 1)(2j + 3)] ,/2 
2 Eoq 2j + 2 A(j_ 1/2)- h(r) 

1 2 { 3j )l/2{c ~ +j+1/2"~.(., 
-'7- -4 Eoq r ] s w  \ ,  

+(4j( - -  \1/2 / j + ,/2"~ 1)) 7- )g(r) 

-((2j~-l)(2"~+- a))i/2A(,_l12)_(cn , j~al2)k(r)=O (C2a) 
\ 4jU + 1) 

- 1E3  I E  4 j - a A j +  ]g(r) 8 ~176 q - 7 0 q - - ~  1/2 

3j , / z  +5/2)  

+(4(j3+-~)mAs+t/2@,+J+rS/2)]f( r, 

+[:E2q('2'-l'(2j+3')'12(8"7(-]7-1) J--r 1-/2 ) 

_ ((2J ~- 1)(2J--+ 3)'~ mA @ J 
4 , < , + , , ,  

1 2~ - + 5 Eoq [3(2j - 1)(2j + 3)} vz&j_ ,12)- k(r) = 0 (C2b) 



0 o_
 

C
~ 

+ 

II -F
 

+ r II I 

+ I -F
 

+ + 

II 0 C~
 

~ 
J 

m
 

~ 

+ 
~_

 

+ + 
~ i 

i 

+ 
[

m
 

1 

-F
 

I 
oo

 
I 

,--
~ 

I 

8 
o 

I t~
 

1 

I + + + 

H 

J I 

I 

I 
I 

+ I 

I 
+ 

I 

L.
m

_.
_J

 

I 
I 

I I ;,r
 

8 
~ I I 

l 
I 



Spinor Strong Interaction Model for Baryon Spectra 2349 

R E F E R E N C E S  

Belifante, F. J. (1953). Physical Review, 92, 997. 
Bethe, H. A. and Salpeter, E. A. (1957). In Handbuch der Physik, Vol. 35, p. 149. 
De Rujula, A., Georgi, H., and Glashow, S. 1. (1975). Physical Review D, 12, 147. 
Feynman, R. P., Kislinger, M., and Ravndal, F. (1971), Physical Review D 3, 2706. 
Hoh, F. C. (1993), International Journal of Theoretical Physics, 32, 1111. 
Hoh, F. C. (1994). International Journal of Modern Physics A, 9, 365. 
Hoh, F. C. (n.d.-a). Flavored Meson Spectra in the Spinor Strong Interaction Model, 

submitted. 
Lichtenberg, D. B. (1978). Unitary Symmetry and Elementary Particles, Chapter 12. 
Lichtenberg, D. B. (1987). International Journal of Modern Physics A, 2, 1669. 
Particle Data Group (1990). Physics Letters, 239B. 


